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Abstract

A technique that simultaneously maximizes the gain of an ant¢nna array and
places a number of independent nulls in the radiation pattern has alrcady hecn
presented. The elements used were idealized point sources. In the present paper,
the previous analysis is extended to cover arrays of thin wire elements 1n which
mterelement mutual coupling and scanning effects are included. Sample calcula-
tions and computed radiation patterns demonstrate that an appreciable amount of

patiern and sidelobe control can be cbtained with only a small sacrifice in gain.
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Null Steering cud Maximum Gain in
Electronically Scanned Dipo.e Arrays

L. INTRODGCTION

In a recent paper (Drane and Mcllvenna, 1870), the authors presented a
technigue for maximizing the gain of ar antenna array, wrile at the sgame time
placing one or & number of independert nulls andfo~ si<~lobes in the far-field
radiation pattern.* Some problem t.reas requiring such a lechnique include the
elimination of jammer interference in radio~radar communriratians links, the re-
duction of ground reflections in sited antennas and the. minimizaticn of inter-
anienna interference effects in multi-an‘enna eavirormenta., The #ample computa -
tions in that earlier paper were restricted to arrays cf idealized an'enna elements,
that is, isotropic radiators, It wus pointed oul there, however, that the "Inaximum
gain - null placinb"’ .:chnique would be »pp .icable even with errayc of e.oments
{dipoles, for example) when intcrelernent mutual coupling effects must, of neces~
sity, be considered. Since that time, a particular method of design Jor arrays of
wire elements (Streit and Hirasawa, 19568 a.d 18€8a) which elegantly and . ractically
accounts for mutual coupling effecta has been ~ombined with the afore nen'ioned
maximum gain - constraint technique. Th2se design methods are ditcusred below
together with some examples of practical interest.

(Received for publication 31 Jarwary 1972)

*Several papers on this and closely related subjects have apr.eared (Nemit, 1969;
Sandrin and Glatt, 1970; Riegler and Compton, 1970; Piesce, 1870; Hessel and
Sureau, 1971; Adams and Strait, 1970; Sanzgiri, etal, 1971),
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2. DFSIGN TECHNIQUES FOR ARRAYS OF WIRE ELEMENTS

The method summarized below is due to Strait and Harrington and has been
reported in detail by Strait and Adams (1970), Chao and Strait (1971), Strait and
Hirasawa (1970a), Hirasawa and Strait (1971a, 197 1_13), and Strait and Chao (1971).
With it, the designer can determine such properties as the actual current distribu-
tions along the antenna elements, input and driving-point impedances and the radi-
ation and scattered field patterns of arr: s of parallel, staggered or even arbitrarily
bent wirer, The elements may be arbitrarily spaced, loaded or unloaded, lossy or
lossless, center-fed or arbitrarily excited at points along their length, and they
may be placed in any geometric arrangement. Even radiating :lements with wire
junctions such as crossed dipoles {Chao and Strait, 1971) can be handled. Most
importantly, in every case mutual coupling effects are included. Detailed handbook-
typ« ~:ports with computer programs for a wide variety of array design problems
are available by Strait and Hirasawa (19692. 1970b), Chao and Stirait {1970), and
Ma=autz and Harrington (1971). Only the highlights of the technique are presented
here; they lead to a. expression for array gain with mutual coupling effects included.

Starting frowa the integral equation for a thin wire, one conriders each antenna
in the array to be subdivided into a number of segments, K (ien per wavelength has
proven to be sufficient for far-field considerations), v ose end-points are treated
as the terminals of a multi-terminal pair network. The goal is to relate every
terminal pair to every other terminal pair through a mutual impedance matrix.

The two boundary conditions, that the tangential component of the electric field
vector E must be zero on the surface of each conducting element and that the axial
current must go to zero at the ends of the ¢ atenna, are included 1n the analysis.

Introducing column vectors I and V, sach with K components that ai< respec-
tively the segment currents and voltages,

T .
- {1 Lyeenuig )

and
T
V = {vlavzo---:VK}'

where superscript T denotes the vector transpose operation, allows one to repre-
gent the array problem in terms of circuit theory format, that is,




T

e g T NS T A Vel

G e ———en—— NI, TS CIE LI Y VTGP S e L TS v g

where Z, a (K X K) - element, symmetric complex matrix, is the mutual impedance
matrix relating the voltage and current for any segment io the voltage and current
for every other segment.

Methods for calculating the elements in Z for any array geometry are available
(Strait and Hira.sawa, 1969a). It has been siiown that

Zk,n = jw By oLy, Alk¢(n,k)

+ et -vaen k) -vat k) et k),

jwe
e,

where

dz’',

, exp [~ BRyy(e)]
¥k = 4mzn/ R, (z')

Aln

and Aln is the length of the nt'h segment, Rkn(z') is the distance between the kth
and nth segments and the superscripts + and - (in n* and n”), denote the starting
point and termination, respectively, of the nth segment. The quantity w is the
operating angular frequency, B is the corresponding wave number, and € and u o
are the universal electric and magnetic constants. The only other approxima-
tions made in this analysis are that the current and charge are assumed to be con-
stant over the length of each segment. Calculations and comparisons with other
mutual coupling methods have shown that such assumptions are not overly restric-
tive (Strait and Hirasawa, 19693). Resistive or reactive loading and element
losses can be included simply by adding a load matrix Zl to the Z matrix defined
above (Hirasawa and Strait, 1971a).

Given an array geometry and a set of driving voltages, the segment currents,
with all mutual effects included, are found quite simply from

where Y is the (KX K)admittance matrix. With these segment currents, all the
parameters of interest to the array designer can be obtained. For example, the
far-zone vector potential for z-directed current elements has only a z-component
given by (Strait and Hirasawa, 1967a)

) K
A_(6,¢) - eXp[-jBr] Z AL 1 exp()B(x sinfcosd+y sinfswétz _cosb)],
z 47r re=1 nn 1 n n .
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and the far-field amplitude pattern is

E(0, ¢) = -jw “04’.2 (6, sin 9.
In ‘n2se expressions x , y, andz  are the Cartesian coordinates of the center of
the nth gegment while r, 6 and ¢ denote the polar coordinates of the far-field
observation point.

A non-restrictive assumption that simplifies computations is to take all seg~
ment lengths to be equal. Defining an angle-dependent row vector F(0, ¢) with K

elements, that is,

F (0,9) =exp[jB (x_ sinOcosy +y sinOsing+z cosb)], 1=n=K,
and replacing I by YV leads to a matrix form for A,, viz.,

A, (8,4) =K [F(6,4)YV], @)
where

K, = SRLIPT] 4y,

where & is the length common to all segments. One need only use the relations

above ana some standard definiticns to develop an expression far antenna gain

which includes the eifects of mutual coupling {Strxit and Hirasawa, 1963a).
Recsll that power gain for an antenna is defined to be

G = 47 Power radiated in a particular direction (3)
total power input io array

The power radiated in a particular direction (60, vo) is volated to the far-field
amplitude pattern by
2 .2
r/E (6, 9);

P (000 ¢0) = "n_—-‘— ’
(o]

where N, 18 the impedance of free space. in terms »f the matrix expressions
above,
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where superscript + denotes the combined operations of complex conjugation and
transposition. The denominator term in Eq. (3) can be handled by multi-port
circuit theory techniques and is expressible in terms of the D driving-point volte.ges
vq and currents ig as (Strait and Hirasawa, 1969a)

D
= s ox
PT = Z Real (led ).
d=1

Let iD and VD represent D-element vectors of the driving-point currents and
voltages. In vector notation

*

PT = Real (VD ID ).
Let YD represent the (D X D) complex driving-point admittance matrix formed
from Y by selecting only those elements that correspond to driving points (Strait
and Hirasawa, 1969a). Because of the symmetry in Yp,

¥+

Pn=Vp (Real Yp vy

and Eq. (3) becomes

vt FED gDV

G= Kl T — , {4)
VD (Real (YD))VD
where
_ (w MOM)2
f\l = gin“ 6 *—'—m';-—

the numerator matrix (F§)+(F?) is a (K X K)-element matrix and the cerominator
matrix, Real &D)' is a (D X D)-element matrix.

In the authors' earlizr paper (Drane « *d Mcllvenna, 1970), the parameter
optimized was directive g»1n in contrast tc the power gain discussed above. The
difference between the two gaina lies only in the denominator term of Eq. (3).
Directive gain utilizes the total power radiated, thatis,
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instead of the total power input to the array. When the ramating elements are loss-
less (the usval 2ssumption), the two gain formulations are identical. In any case,
however, directive gain is an upper bound for the power gain and is therefore often
used as a comparative indicator of array performance. It can be calculated from
the expressions for P(9, ¢) given earlier. (See Appendix A for detaiis.)

Note that, as yet, no assumptions about the number of f.ed points have been
made. If for example, every segment is fed, then D = K, V) = V, and both the
nunerator and denominator matrices in Eq. {4) are (K x K) ~clement matrices.
Usually, however, D « K, and, in fact, a very common array configuration has
each antenna element center-fed, in which case, D = N, This center-fed agssump-
tion also piovides some simplification in the numerator of Eq. (4). For perfectly
conducting center-fed elements, the only non-zero entries in V are at the N drivirg
points themselves. One may then delete all the elements in the numerator matrix
(F?)+ (FY) which do not correspond to these feed pcints, denoting the resulting
(N X N) deleted matrix as;

— — + —
A= (FY)D (FY)D .

For example, in a two-element array with five segments per element (K = 10), the
center-feed poiats correspond to segments 3 and 5, and one need retain only four
of the orignal 100, that is (K x K) elements of tne numerator matrix (FS-{)+ (FY),
namely, those with corresponding pairs of indices (3, 3), (5, 8), (8,3) and (8, 8).
Thus, the center-fed assumption reduces the ‘imensions of the numerator and
denominator matrices of Eq. (4) from (10 x 1v), that is (K X K) to (2 x 2), that is,
(N X N). The final form for the power gain of an N-element array of center-fed
thin wires, with mutual effects accounted for, can then be written as

+—
Vi, AV
G=K, — r2—2 -k
Vg Real (¥) V)

+
M)
17y +

wi

\'
L, (5)
VD

The numerator and denominator matrices in Eq. (5) are both Hermitian, A is
a one-term dyad, Bis pesitive definite, hence the maximum gain can be written
down immediatcly as (Striit and Hirasawa, 1969a)

: = + - =1 _
GMH K, (FY) (Real {¥))  (FY), (6a)
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and the voltages that produce it are given (to within a constant) by

V“D‘a" = (Real &D) )-I(FS—()D . (6b)

Equations (5) and (6) serve as the starting points for :he maximum gain-constraint
technique.

3. THE CONETRAINT METHOD

The technique for placing nulls in the far-field radiation pattern, while simul-
taneously maximizing gain, followz the steps outlined in the authors' earlier paper
(Drane anu Mcllvenna, 1970). Placing nulls in the directions { ), ¢; },
i=1,2,..., M, withM < (N - 1), requires that E (6, ¢) (or ecaivalently Az(-'),q&))
be set to zero in the M desired directions. For the center-fed wires discussed

earlier, we therefore generate a set of M linear, homogeneous constraint equations
of the form

(F(Oi, d’i)Y)D VD =0, i=1,2, ..., M.

Fach of these equations consists of the inner product of a D-element angle-
dependent row vector

(F (0,9 T)p)

henceforth referred to as the constraint vector, and the celumn vector of driving
point voltages, V. These constraint equations are not directly solved for the

¢r ing voltages. Instead, theiwr effect is introduced into the g~in cxpression
through a transformation as follows., Each one of the M constraint vectors is
congidered to be a particular row in a constraint matrix which thus has M rows
and D columns. In the case of the center-fed wires being considered here, D = N.
The rectangular (M x N) constraint matrix 18 riade into a square (N X N) matrix,
c, by adding {N - M) rows. These additional rows can be any collection of N-
element inderendent vectors. For example, the s:mplest such collection could be
(N - M) rows or columns of the (N x N) identity matrix., The (21X N) matrix C1s
then orthogonalized, row by row, using any appropriate method {Guillemn, 1949);
and the resulting (N X N) matrix, denoted as l_’, contains all the constraint informa-
tion and 18 now 1ntr.duced into the gain expression via the transformaticn

v PYV ¢cr s Py,
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Thus, from Eq. (5),

V+_cv
G=K 4=~
v Bcv
where
- pe i SEPSECN § = =+ +
Ac=PAP =P(FY)D(FY)DP za,a,

— — —_— —4
[+ D

Following the arguments outlined earlier, we discard the first M rows and columns
in Kc and 1-30, leaving the abridged (N - M) x (N - M) element matrices i_\a and l_?.a,
discard the firet M entries in ¥ (denoting the resultant ab~iaged vector Vh)

and finally discard the firat M entries in a, (denoting i resultant vecter a,). Thus,
the final quadratic form representation for array gain, with all the effects of
mutual coupling and pattern constraints included is

the .naximum constrained gain is

fmax K, (a; Ea'l a,) = gmax

and the corresponding driving voltages are found from

where l—"d is an (N - M) ¥ N-element matrix formed by deletion of the first M rows
in the (N ¥ N)-element matrix P,

These results verify the claim made in our earlier work that, even when
mutual coupling is included, the form of the gair relation and the properties of the
numerator and denominator matrices are unchanged. *

*An alternate constraint technique has been proposed by Adams and Strait (1970).
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4. SOME EXAMPLES

One of the most common linear array configur=tions utilizes A/2 elements
uniformly spaced at Af2 intervals. This geometry was used for the sample com-
putations in this paper. There were 12 thin, straight, wire clements, oriented in
the z-~direction and spaced along the x-axis, with 5 segmen's per element. Strait
and Hirasawa (1969b, 1970b), Chao ard Strait (1970), and Mautz and Harrington
(1971) provide the computer programs to consider other geometries and element
types.

One of the problems ideally suited to the maximum gain - constraint technique
is the elimination of interference, jamming or unwanted signsls through control of
the radiation pattern. Unconstrained maximum gain radiation patterns are charac-
teri1zed by the presence of a relatively high secondary peak, for example 13 dB
below the main peak. These high secondary peaks make such arrays susceptible
to jamming. One can use constraints in several different ways to reduce these high
peaks; two possibilities are discussed in the examples below.

One corrective technique requires the use of a single constrau 't and replaces a
secondary peak of the unconstrained maximum gain pattern witk a null. A second
approach is to use two closely spaced nulls to reduce the radiation level over an
angular sector that includes the secondary peak. The first approach 18 useful when
the angular location of the jamming scurce is exactly kaown. The second is more
suitable when the location of the interfering source is not accurately known or when
one desires to control a broader region in the pattern perhaps because the jamming
source is of some s‘riificant angular extent. 1n both cases, the null or nulls
should be maintained fixed in space even while the main beam is s.anned all the
way from broadside to endfire. Because of this wide range in scan angles, it is
especially important to include mutual coupling effects. Figure ! demonstrates
the two techniques with the unconstrained broadside pattern of a 12-element, A/2 -
spaced array of thin-wire dipole elements, A/2 long. All patterns are normalized
to facilitate vomparison. The secondary peak of the unconstrained maximum gain
pattern at ¢ = "6° is eliminated by the first technique or it can be reduced by the
gecond technique. Ncte that the pattern structure is relatively unchanged, except
in the vizinity of the enforced nulls. This demonstrates the localized pattern
control available with the constraint method. The 3 dB beamwidths of all three
patterns are almost identical, while the beamwidth between nulls of the constrained
patterns increases only shightly. For the two-constraint case, the design criter:a
were as follows. The main beam should be scannable 1n the principal H-plane, but
for every scan angle in that plane, the gain in the direction of the scan angle 1s
maximum, while the radiation level is held at or i:elow -30 dB over a 4% angular

sector centered at ¢ = 76°. This minumal radiation level sector was created by
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Figure 1. Broadside Beams

using two nulis, fixed in place (at 4 = 74° and ¢ = 78°) for all scan angles. The
regualtant patterns, for this two-constraint case plotted at 10“ increments in the
scan angle, are shown in Figure 2. Note in Figure 2(a) the well defined trough

in the patterns, which is at least 4°wide at every =can angle and in which the highest
radiation level is =30 dB for the broadside pattern and at least -35 dB for the

other patterns. Figure 2(b} shows the gradual and expected broadening of the main
beam and the buildup of the endfire lobes as scan angle increases, until at ¢ = 180°,
the pattern is bifurcated. This splitting of the main beam 1nto twc equal lobes is
characteristic of the A/2 spacing chosen for this example.

Complete information for the unconstrained, one-constraint and two-constraint
cases is presented in Taple 1. Corresponding radiation patt:rn plots are shown in
Figures 1, and 3 through 11.

Examining Table 1(a), we see that as mentioned earlier, constrained gains are
less than or equal to the unconstrained gains. An interesting observation 1s the
small amouats of ge’- that must be surrendered to obtain a desired degree of
paitern control! In the one-constraint case, the largest loss occurs at broadside
and represents only a 5 percent reduction 1n gain. In the two-constraint case, the
largest loss is about 4 percent again at broadside, and 1n both the one- and two-
constraint cases, the ‘ain loss 1s less than about 2 percent over the range of other

scan angles.
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We also see that for some scan angles, that is 90° to 110°, the gain in the
two-constraint case i3 higher than in the one-constraint case. This 18 sumply
explained. Controlling the value of the secondary peak to -30 dB as done in the
two constraint case represents less of a constraint on the pattern behavior at these
angles than ¢daes forcing that same peak value to be zero, as is done in the one-
constraint case. It thus does not necessarily follow that the gain decrease is
directly proportional to the number of null constraints used. Only when the con-
straints are used to perform the same function on the pattern will the gain decrease
be proportional io the numbe.' of constraints. For example, replacing two peaks
with nulls causes more gain loss than replacing one peak with a null, and replacing
three peaks with nulls causes even more of a gain loss, and so on. This type ot
dependence, linking gain loss to number of enforced nulls, 18 the only one that can
be identitied,

Generally speaking, the decrease in gain value caused by pattern constrainis
is propurtional to the value of the unconstrained pattern in the immediate vicinity
of the enforced nulis. For example, as seen above and 1n Figure 1, at broadside
the constraint zegion includes a significant secondary peak of the unconstrained
paiter and the gain loss is larges:; when the unconstrained pattern value 1n the

congtraint region becomes smaller, the gain loss 1s less. For example, at 140°
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and 160°, the unconstrained pattern already has a nuli at ¢ = 76°, implying that the
one constraint case is in actuality no constraint at all. There is therefore no loss
in gain, the amplitude and phase distributions are almost identical and the uncon-
strained and one constraint patterns are quite similar (see Figures 7 and 9).

An exarination of the voltage amplitude distributions in Table 1(b), (each
distribution is normalized to the voltage for its first element) reveals that these
maximum gain voltages, constrained and unconstrained, are all non-uniform and
most are non-symmetric about the center of the array. The only two symmetric
distributions (the broadside and endfire unconstrained cases) correspond to the only
two radiation patterns that are symmetric about the broadside angle ¢ = 90°. Note
that in some cases the voltage required for element 12 differs significantly from
the voltages for all other elemenis. It also appears that for certain scan angles,
for example 150°, the difference between the unconstrained and constrained ampli~
tude distributions is small. As was true for the earlier comparison of the corre-
eponding gainvalues, the explanation here is that at some scan angles the uncon-
strained pattern values are either very small in the constraint region, or the
direction for one of the unconstrained nulls is nearly the same as that of one of the
constraints. The constraint condition therefore requires only a slight perturbation
of the unconstrained voltage distribution in these cases. Finally, note that in no
case is the dynamic range of the driving-point voltages excessive. Compared to
the ten-to-one variation usually taken as the practica. lir it of realizawvility, the
range for both constrained and unconstrained optimum distributions is less than
about two-to-one, and the distributions should offer no construction problems. The
phase distributions for these maximum gain arrays can be considered to consist of
the superposition of several components. The first is the uniform progressive
phase taper that steers the beam to the desired scan angle and is common to all
electronically scanned arrays, const-ained or unconstrained. The second tapcr is
that required to maximize the gain. And, in the constrained cases, an additional
taper is required to place the pattern nulls as prescribed. Table 1(c) shows the
unconstrained and constrained normalized phase distributions, after the beam
steering phase distribution (shown for reference in Table 1(d)) has been removed.
As in the case of the voltage distrilutions, note here also that the phase distribu-
tions are non-uniform and that most are non-symmetric. Finally, keep in mind
that the exarrples discussed in this paper, and indeed in most expected applications,
even though the designer directly controls the sidelobe level in only some local
region of the radiation pattern, additional control, as a direct result of the applica-
tion of these constraints will not become necessary over the remainder 0" the
sidelobe region (Sanzgiri and Butler, 1971). This 18 due to the ge..cral phenomenon
that reasonably low sidelobes are an intrinsic concomitant to maximizaton of gain.
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5. COXCLUSIONS

We conclude that even with mutual coupling accounted for, the maximum gzin -
constraint technique provides realistic and practical solutions to array design
problems requiring localized pattern control. The technique is applicable to prac-
tically all arrays cf wire elements, regardless of their geometric arrangement a. d
their electrical loading characteristics. The required relations and »quations can
be cast in matrix form and are ideally suited to computer manipulation, making
them useful in adaptive or real-time situations requiring rapid pattern reconfigura-

tion.
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Appendix A

Derivotion of a Relation for the Directive Gain of an Array of Electrically
Thin, Straight Wires With Mutual Coupling Effects Included

It was pointed out in the text that the expressions for directive gain and power
gain differ only in the form of the denominator term. Power gain used the total
power input to the array while directive gain uses the total power radiated. These
are the same when the system is lossless. In all other cases, directive gain serves
as an upper bound on the power gain and is often used as a performance criterion in
array design. This laiter expression is given in general by

29 7
. ]

.1 ,
PRad. ~ ia J, I P(6, ) sin 6d¢d 6,
o o

‘where P(6, ¢), the power pattern of the array, can be expressed as

2
T
P(0, ¢) ——no

2
sin2 0]

2
E(®, ¢)’ =K |a,00,0)

and K = (ruuo)z/no.- This integral has been evaluated by Tai (1964) and Lo et al
(1966) for isotropic sources and short dipoles. For the case of electrically thin,
z-directed wires, spaced along the x-axis, A, (9, ¢) is given by
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K
AZ(B,O) = e_x%l_'@ Z Mnlnexp [jﬂ(xn gin Gcos ¢+ z,, cos 9].
n=1
Taking all segments to be of equal length leads to
1 WH, Y% *
PRad.'n_o( Z Z b 1%, (A1)

n=1l m=1

where
2%

1
bnm=Tif
0

and

L
fexxa [i@,, sinbcosd+< —cos 9) |sin® 0d 640,
o

D = B (xn-xm), Em* B (zn-zm) .
The bnm terms depend only on the array geometry and in no way are modified by
the inclusion or exclusion of mutual coupling effects. But, the I, quantities do
indeed depend for their values on mutual coupling considerations. In matrix nota~
tion, Eq. (A1) becomes

2 2
L1 (YHAIY g g (URyAL t Tt E T
FRad ” 7’:(—4?" PBl=q{ar ) V 0 EDV. (2)

The integration on ¢ in the expression for b 18 readily performed (Jahnke
and Emde, Pg. 149), that is,

n

2
f exp [)D,  sinfcosd]dg =27J (2  sin6).
o

Thus

1 . .3
=5 f m SO exp [JE cos 8] ¢in"6 d.
0

This integral may be evaluated as follows. Note that about 8 =7/2, sin’ 0 and
Jo Pnm
can discard the imaginary part of bnm and, using the evenness of the rcal part, we
have

sin ) are even functions of 6, while sin (Enm cos 60) is odd. Hence, we
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x/2
_ : .3
b s f Jo (Dmn sin 0) cos (Enm cos 8) sin” @ df. (A3)
0

Since

sin3 0=s5in6(1- coszﬂ)

and . .
® - (Enm cos 9)21

cos (Enm cos 0) = Z i) ’

i=

we can write
11/2
. 2i .
j' Jo (Dnrn sin 8) (cos 6)°" sin0 dé

. 2i+2 .
- J J0 ('Dnrn sin 0) (cos 6) sin 6 d6

o
Integrals of this same form were treated by Lo et al (1966) using the relation
(Magnus and Oberhettinger, 1949)

2 puer, DTN I, @)

f J, (zsin0) sif *1gcos 640 =
(o]

viu+l

+
zvl

, Reu,Rev > -1,

Thus

o0

(-1)1(1~:nm)2i 2121 41/2) Jit 1/2Pnm)
Pam * Z @i o T2
i=o nm

2t Y2 pi43/2) Jit3/2 Ppm)

® )i+3/2

nm

Recall that
C(i+3/2) = (i+1/2) T (i+1/2),

(2i)! =T (1+2i) =T[2(i+1/2)],
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and that
2z~-1
roz . 2o TE@TE+1/2)
=1/2
Thus
o0 i 2i
TS 0 e [ 15 O
nm 2 & ol it a)mn)1+l/2
2(i+1/2) ., 70 D)
- (1)) )1::;”22 el om#n (as)
nm
and b = 2/3.
Note that
Dmn = - Dnm
Enn® ~Ep-
. i+1/2
T4 1/2 Prmg) = D) / 31+ 1/2 g

L qoyit3/2
Ji+3/2(Dmn)-( 1) J

i+3/2 D)

hence bmn = bnm and -B- is a real, symmetric matrix. Both m and n range from

1 to K, where K is the total number of segments in an N-element array. K can be
rather large; for example, in the arrays considered in this paper, 12-elements
with 5 segments per element, K = 60, Fortunately, however, one needs to calcu-
late all 1800 of the bmn elements only for the most general array geometries, that
is, wires of arbitrary length and shape, arbitrarily spaced and located. In most
arrays of practical interest, significantly less calculation is required. For equally
spaced arrays of N straight wires, with S segments per wire, only NS or K of the
1800 elements in E are distinct. To see this, refer to Figure Al taking N = 12
elements and S = 5 segments per element. Each of the twelve anienna elements
gives rise to 25 bmn terms. These (5 X 5) - element square submatrices are
situated symmetrically about the main diagonal in B; hence the srbmatrix diagonal
terms are known to be 2/3, Because of the symmetry in E, only 10 of ithe remaning
20 terms in any main diagonal submatrix can be distinct. One such submatrix, that
agsociated with the first element, is shown below.
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|2/3 by, bz by by
big 2/3 by by, by
By = bis  by3 2/3 by by
big Py by 2/3 by
bjs Dbys bgs By 2/3 | .

Each one of the 10 required bnm terms depends on both a Dnm and an Enm term.
If the wire is straight and parallel to the z-axis, all 5 segments on that wire have
the same x-coordinate and Dnm = 0 for all 10 of the desired elements in El’ If, in
addition, all segments are chosen to be equal, then

E12=Ey3 =Egy = Eyg
Ej3=Ey =Egg
B4 =Ep5-
4
oy r— ey
5 10[e 15| sorj
| | || ||
4 9. 14| 59|«
3 8ile 13]e [ [ [} 581 e
" | | L
2 7]e 12| e 57|
b et _— - -
— 61+ T 56 - x
L1 L] L
-

Figure Al. 12-Element Array, 5-Segments per Element
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Hence,

b b

12 * Pa3 = b3q = byg
byg = byy = bgg
byg *byg -

and only 5 elements are needed to completely specify El' Its final form is

2/3 by, bz by byg
by 2/3 by by by
By = big Dby 2/3 by by
byg Pz by 2/3 by,
bis by Pz by 2/3 .

If all the elemenis in the array are identical, then all of the 12 main diagonal sub-
matrices ar. identical to El and 300 elements in B are determined with only four
bn'n calculations,

The off-diagenal submatrices in 8 depend on the array spacing. Each pair of
elements in the array gives rise t» a 25 term submatrix and for a K-element arvay,
there are 66 of these. In any one of these submatrices, if the .vo antenna elements
in question are straight and parallel, all Dnm terms are the same and have the
value Sd where d is the interelement separation. As in B.l there are only 5 distinct
Enm values, hence once again only 5 calculations are needed to determine ali 25
terms in any of the submatrices. The submatrix, BZ‘ representative of the first
two array elements, is shown below. It has the same type of symmetry and row
regularity as El’ sometimes called a Toeplitz property.

bie P11 Pig Prg Py a0
b7 P Pir Pyg Py
B, = bijg Pir Pig  Pyr byg
big Pig Pir P Pbyg
bi,10 P19 Pz Py7 Pyg

ETINE
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Similar arguments show that the submatrices representative of the remaining
array ei-ments and element one, that is B3. 34. cves 312. have the same form,
symmetry and regu. rity as {52 and that there are only 5 distinct terms in each,
When the array is equally spaced, each of the remaining 48 submatrices in
[5 is identical to one of the 62. ﬁ3. . p i2 submatrices discussed above. ‘I‘hus.
for an equally spaced array of straight parallel wires with equal segments, ﬁ con-
sists of only 12 distinct submatrices, and in these, only 60 terms are distinct; it
has the same Toeplitz property as its component submatrices.

- e v e e

- e e e - e e —

B1oP11B19PoPy Py By By

'El .

The cyclic pa2 nerty of { and its submatrices is also present in the generalized
impedance matrix Z for this type of array (Strait and Hirasawa, 196%a), since
elements in both Eand 7 depyend only on intersegment distances.

The 60 distinct elements in Eare the first row blm' 1<=m =< 60, or the first

column terms. These 60 terms are associated with four combinations of Dnm and

Enm'

@) Drxm:Enm:o

(b) onm# 0,E =0

1891

) Dnm =0, Enn. 0

(d) Dnmvf 0,E ¥0.

These can be used to simplify the bnm expression in £q. (A4)., Case (a) has been
discussed earlier and constitutes the main diagonal terms in B where bnn =2/3,
Case (b) is the situation in 11 of the 60 required b m elements. Theyareb,

wherea = 6,11, 16,. .,56.
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Referring to the general bnm expression in Eq. (A4), note that when E am = 0, all
but the first (i - 0) term digappears and

b ,(_1_)1/2 I1/2 ‘D/m) _ 370 ‘Dlla’
e\ 2 iz 32
) ®,)

for these 11 terms, But,

s ®. ) - 2D1a ix_n Dh
1/2 Y x Dm
and
5 . )= 2Dla sin Dla ) cos Dh
3/2 Vi z . )2 D,
1o
Therefore,
1 sin Dla 2
bh = 3 ) (Dm-1)+cos Dla (A5)
(Dla) o

Note that Case (b), with D, # 0andE__ =0 corresponds to elements of zero
length, that is isotropic or short dipoles, and has been treated by Tai (1964) and
Lo et al (1966). Equation (A5) agrees with their results. Case (c), Dnm = 0,
Enm # 0 arises in calculating 4 of the required 60 bnm elements. They are

blB‘ B =2,3,4,5. Looking at a general series representation for Jv (x), that is,

o0
r _v+2r
R R = A
reo T+ 2 Tv+r+1)
we see that
J, &) 1
v ~ T asx ~ 0.
X 2" I'(v+1)

Hence, if in Eq. (A4) Dnm = (0, we have

LS

i ® Z Gir 1) (1+3/2) * (A€)

1=0
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where we have used the fact that

,1/2 i 1
22 i+ 1/2) T+ 1) 2I'(2i+ 1)

The remaining 44 of the 60 required bnm terms must be calculated from Eq. ‘A4).
It is probably easier to simply use Eq. (A4) for all 60 bnm terms when programming
a computer for the calculations. In this case, fifteen terms of the series, Eq (A4),
will provide sufficient eccuracy, that is on the order of 1078, as long as the inter-
element spacing is no smaller than A/3. Calculations based on these results agreed
with those based on the power gain formulation for the 12-element, lossless arrays
considered in this paper.

Equations (A2) and (A4), together with the symmetry arguments and simplified
bmn forms, provide the basis for calculating the directive gain of an array of
equally spaced straighi wires with mutual coupling effecis included. The fina

formula for this gain is given by:

+ oo, T
.V (FY) (FY)V sinz 0.

G, = L0 RS
b ytatg v




